Getting Started
with the
Unix99 Operating System,
Release 3

1 December 17, 2025

Table of Contents

Change History 4
1. Purpose 3
1.1. Features 5
1.2. Prerequisites 6
1.3. Performance 6
2. Installation 7
2.1. Extraction 7
2.2. Classic99 7
2.3. MAME 8
2.4. TI-99/4a with TIPI 9
2.5. TI-99/4a with TIPI and any of IDE, SCS or WDS 10
2.6. TI-99/4a with a combination of IDE, SCS or WDS 10
2.7. TI-99/4a with Pico Peripheral Expansion Box (PEB) 10
3. Upgrade from Previous Installation 11
4. Usage 12
4.1. Power-Up 12
4.2. Login 12
4.3. First Step Examples 12
4.4. Default User Accounts 13
4.5. User Accounts Management 13
4.6. Printer Configuration 15
5. Architecture 16
5.1. Runtime 16
5.2. Library Methods 16
5.3. Memory Organization and Usage 17
5.3.1. RAM 17

2 December 17, 2025

5.3.2. SRAM Organization

5.3.3. VDP RAM Organization
5.4. Persistent File Types

6. Commands

6.1. Unix commands

6.2. Non-Standard Commands
6.3. Example Programs

7. Development Environment
7.1. Docker Container

7.2. First Application

7.3. Standard C and Unix Libraries
7.4. TI-99/4a - Specific Libraries
8. System Directories

9. Future Release Plans

10. Credits

11. Troubleshooting

17
18
18
19
19
19
19
20
20
20
20
21
23
24
25
26

December 17, 2025

Change History

9/7/2025
9/11/2025
9/14/2025

09/28/2025

10/12/2025

10/24/2025
10/25/2025
12/17/2025

Original version

Added steps for loading java packages for Unix99-specific TIPI unique features
Added change history

Added PicoPEB installation instructions

Added trouble-shooting section

Misc corrections

Corrected Classic99 disk setup description

Added version numbers for hardware with integrated software/firmware
Added accounts management sections

Added upgrade section

Added example for loading a manual page

Added table of observed boot times

Added printer configuration

4 December 17, 2025

1. Purpose

This document describes the features, installation instructions and usage of Unix99 Release 3. Unix99
Release 3 provides a modern operating system environment for the TI-99/4A, combining the standards
of Unix and the unique features of the TI-99/4A platform. This release includes an external development
environment with C language cross-compiler and standard libraries. The development environment also
includes extensions for the platform architecture.

1.1. Features

+ Unix commands

» Unix APIs

File streams (text and binary), block level read/write cached
Directory handling

Current working directory

Path operators (/, ., .., and ~)

« Command line argument passing (argc, argv)
Standard input/output with pipes and file redirection
+ Process queuing via system(), execv()

« IPC (shared memory)

« Signal handling

* In-process cooperative multitasking

+ User account management with password management
+ Basic ciphers

+ Login session management

* Manual pages

+ Drive support (WDS, SCS, IDE, TIPI, DSK)

« Graphics |, Graphics Il, Text (40 and 80 columns, 24 and 30 rows) display modes
+ Drawing support

+ Color management

+ Font management

+ Sprite management

+ Text /0O management

« Sound management

+ Speech management

+ SAMS support

« File caching (executables only)

* Memory paging

« F18A / Pico9918 support

+ GPU based text management

+ GPU method management

+ Dynamic link library, partially ROM-based

+ ROM-based kernel

+ TIPI support

+ PicoPEB support

* Printer management

+ External keyboard management

* Mouse support

+ Joystick support

+ Time management

+ Basic GROFF support

+ ROM paging

5 December 17, 2025

+ Development pipeline
+ C language cross compiler
+ Type support for signed/unsigned char, int, long and double

1.2. Prerequisites

The Unix99 runtime environment can be used in an emulation environment (Classic99 and MAME) and
on physical hardware.

Unix99 execution requires the following emulated or real hardware at a minimum:
+ TI-99 console, providing CPU, graphics, VRAM and sound
+ 32KB RAM
+ At least one persistent storage device and minimum versions:
. TIPI - software v2.6, DSR v2025-02-02
- WDSx
- IDEx - DSR v17, v18 preferred
.« SCSx - DSRvi1.50rvi1.6
« Classic99 on DSK1 - QI399.083
+ Programmable GROM hardware, such as FinalGROM, that provides a host for the Unix99 ROM

Additional supported TI-99 hardware and minimum versions:
« Speech synthesizer

+ PICO9918 - v1.0

+ F18A-v1.9

« SAMS memory card

+ RS232 and Parallel I/0

+ External USB mouse (TIPI required)

+ External USB keyboard (TIPI required)

The development environment requires:

« Linux or MacOS
+ Docker Desktop

1.3. Performance

The following boot times have been observed, measuring time from the FinalGROM selection screen to
the login prompt.

Configuration Boot time | Notes
MAME

WDS 34.4 | MFM drive performance is emulated

IDE 16.0 | IDE drive performance limited only by the host system
Classic99 16.7 | Filesystem drive performance limited only by the host system
PEB

TIPI 29.7

IDE 26.2

SCSI Not measured
PPEB 18.5

6 December 17, 2025

2. Installation

The Unix99 files required for installation are contained in the distribution file named
unix99r3_<date>.tar.gz.

2.1. Extraction

Extract the Unix99 files from the unix99r3_<date>.tar.gz to your PC/Linux/Mac filesystem. The tar file
includes a top-level directory named unix99r3. All other files and directories are contained therein.

The image directory contains the following directories and files, although the permissions, username,
group, sizes and dates may differ. This is the runtime directory and is also used directly by Classic99.

drwxr-xr-x@ 52 marko staff 1664 Aug 24 15:50 bin
-rw-r--r--@ 1 marko staff 384 Aug 25 18:06 bootconfig

drwxr-xr-x@ 6 marko staff 192 Jun 27 14:10 etc
drwxr-xr-x@ 37 marko staff 1184 Aug 25 18:06 example
drwxr-xr-x@ 4 marko staff 128 Jun 27 14:10 fonts
drwxr-xr-x@ 5 marko staff 160 Jul 11 07:25 game
drwxr-xr-x@ 5 marko staff 160 Aug 25 18:14 home
drwxr-xr-x@ 6 marko staff 192 Jun 27 14:10 PLUGINS
drwxr-xr-x@ 9 marko staff 288 Aug 25 18:06 proc
drwxr-xr-x@ 2 marko staff 64 Aug 25 18:14 tmp
drwxr-xr-x@ 3 marko staff 96 Aug 11 11:20 usr

Other files, described for specific platform installation in subsequent sections, contain this directory
structure.

The following subsections describe installation of the runtime in the supported environments.

2.2. Classic99

These instructions are applicable to Classic99 as of version QI1399.083.
Classic99 will requires configuration of of one of its disk definitions. and a user cartridge.
These instructions use DSK1; however, other disks should be usable.

DSK1 should be configured to point to the unix99r3/image directory.
To configure DSK1, select the menu option “Disk->DSK1->\DSK1\”.

The path to the unix99r3/image directory must be entered in the “Path:” field. Set all other configuration
values as depicted in the following image.

7 December 17, 2025

'Dsk1 X

Disk Type: [Files (FIAD) ﬂ Path: |C:\Mac\Home\Documenrs\tiQQ\unix99L|;‘

File Options

[V Write TIFILES headers [¥ Recognize TIFILES headers

[~ Write VIT9 headers [V Recognize V9T9 headers

|~ Write DV80 as Windows Text [¥ Read Windows Text as DV files

[~ Write all DV files as Windows Text [v' Allow Rename and Delete

|~ Write DF80 as Windows Text [~ Read Windows files without ext. as Text
™ Write all DF files as Windows Text [¥ Do not write or require headers for DF128
[Dir: Enable Long Filenames [Dir: Allow more than 127 files

[V Dir: Case Sensitive [¥ Dir: Return subdirectories

[v Path: Swap Period and Slash [Dir: Allow Myarc/TIPI subdir API

Image Options

Global Options

[~ Automap DSK1 [~ Write Protect

S

Press ‘OK’ and DSK1 is configured.

This picture shows the Classic99 Disk->DSK1 menu option with the full path to DSK1’s directory clearly
visible.

Disk Options Video Help

DSKO >

DSK1 > C:\Mac\Home\Documents\ti99\unix99r3\image\
DSK2 > Open DSK1

DSK3 >

DSK4 >

DSK5 >

DSK6 >

DSK7 >

DSK8 >

DSK9 >

Corrupt DSK RAM ‘
Tape >

Next, the cartridge image must be set. Select the menu option “Cartridge->User->Open...”. Navigate to
the unix99 directory, locate the file “uthree.bin”, and press “Open”.

Classic99 will perform a restart and be ready to run Unix99.

Follow the instructions below in the section ‘Startup’.

2.3. MAME

In MAME, Unix99 uses the Myarc WDS DSR at WDS1 for the root file system. An example script to run
MAME, run_mame, is provided. As MAME can be and often is installed and configured differently by
each user, it will be necessary to augment the run_mame script to correctly point to the MAME
directories. In particular the environment variables MAME_PATH and MAME_BUILD_PATH must be
adjusted.

Note that the run_mame script also removes state files created by MAME. If you desire the retention of

state behavior the lines to remove are fairly obviously, beginning with the setting of the STFILE
environment variable. My particular uses of MAME resulted in undesirable behavior.

8 December 17, 2025

The run_mame script stands up a fairly feature-packed TI-99/4a with a PEB, 1 MB SAMS, speech
synthesizer, RS232/PIO, high density floppy drive controller, two floppy drives, and a Myarc WDS hard
drive. Serial and parallel output are directed to the files serial.txt and parallel.txt.

The floppy drive images are floppy1.dsk and floppy2.dsk.
The hard drive image is unix99r3.hd.

When configuration is complete, the MAME emulator should start and provide the menu option
“UNIX99R3”.

Follow the instructions below in the section ‘Startup’.

2.4. TI-99/4a with TIPI

The Unix99r3 kernel runs on a TI99 cartridge. FinalGROM is now the most commonly available and
these instructions presume it’s use. Other cartridge solutions should also work but have not been tested.

Copy the file “uthree.bin” to the FinalGROM'’s flash drive root directory.
Transfer the tar file “unix99r3.tar” to the TIPI using sftp:

$ sftp tipi@tipi.local Update the tipi hosthame as necessary
Enter the tipi host password

sftp> put unix99.tar

Uploading unix99r3.tar to /home/tipi/unix99r3.tar

sftp> exit

Login to the tipi host:

ssh tipi@tipi.local
Enter the tipi host password

Change directory to the tipi_disk path:
$ cd tipi_disk

$ pwd

/home/tipi/tipi_disk

Untar the file “unix99r3.tar” into the tipi_disk path:
$ tar xvpf ../unix99r3.tar

Remove any alternate stream files that were contained in the tar file:
$ find . -name “._*” -exec rm {} \;

The TIPI device provides a plug-in feature and Unix99r3 makes use of it to provide support for an
external keyboard and mouse. These plugins and installation steps are required whether or not the user
intends to use these features. TIPI plug-ins make use of the java evdev package.

Install the evdev package on the TIPI device:
$ cd ~/tipi/services

$. ENV/bin/activate

$ pip install evdev

$ exit

TIPI should now be ready to run Unix99.

9 December 17, 2025

mailto:tipi@tipi.local
mailto:tipi@tipi.local

Follow the instructions below at ‘Startup’.

2.5. TI-99/4a with TIPI and any of IDE, SCS or WDS

Follow the complete set of instructions from above section “TI-99/4a with TIPI”.

Unix99r3 should have booted from TIPI.

For Unix99r3 to boot on any of IDE, SCS or WDS, it must be copied there. Unix99r3 locates its files by
looking at the DSR root directories of TIPI, IDEx, SCSx and WDSx, searching for the first occurrence of

the file named “bootconfig”. To be sure where Unix99 is booting from, ensure that only one occurrence
of this file exists on the system.

Login with the username “test” and password “test”.

Execute the following commands:

$cd/

$ cp -R bin bootconfig etc example /BOOTDEV replace BOOTDEV with your device,
such as /SCS1

$ cp -R fonts game home proc /BOOTDEV

$ cp -R tmp usr /BOOTDEV

Remove the bootconfig file from the TIPI disk:
$ rm /bootconfig

Reboot:
$ reboot

After walking through the Tl boot screens and selecting UNIX99R3, your system should be booted on

the device you selected. After logging in, the df command can be used to identify the volume name of
the booted disk. Use the command “df /.

2.6. TI-99/4a with a combination of IDE, SCS or WDS

This is a more “advanced” and difficult configuration. The files in the tar file “unix99r3.tar” need to be
copied into one of the paths IDE1-8, SCS1-8 or WDS1-8. Use your tool of choice to copy the directories
and files under the directory “image” to the root directory of the desired volume.

Specific written instructions will gladly be included here if provided (hint hint).

2.7. TI-99/4a with Pico Peripheral Expansion Box (PEB)

Copy the contents of the “image” directory to the root directory of your PicoPEB SD card. Copy the
cartridge file “uthree.bin” onto the SD card and rename to “uthree8.bin”. Set “CART=uthree” in the
PicoPeb configuration file.

The PicoPEB should now be ready to run Unix99.

Follow the instructions below at ‘Startup’.

10 December 17, 2025

3. Upgrade from Previous Installation

It is recommended that the cartridge ROM and all executable files be replaced during the upgrade
process, which is simply copying in new files.

Prior to copying, backup should include the following, if altered:

/etc/rc if startup configurations were updated
/etc/passwd if accounts were added or passwords changed
/home/* if accounts were added or new files created

A future planned feature is an upgrade process.

11 December 17, 2025

4. Usage

4.1. Power-Up

Power on the TI-99/4a computer and then select to run the UNIX99R3 program.

. @ TEXAS INSTRUMENTS

HOME COMPUTER
d&;p PRESS
1 FOR TI BRSIC
TEXAS INSTRUMENTS 2 FOR UNIXS9R3
HOME COMPUTER

READY-PRESS ANY KEY TO BEGIN

®1951 TEXAS INSTRUMENTS

It will start, initialize the environment, and present the login program.

99r3 booting. ..

TADOEID 0
ATOOOE o
WM o
RIOFRFRRDN O

4.2. Login

Login using the username ‘test’ and password ‘test’.

After login, the shell, sh, will start. The shell is provided for command interpretation and execution.

4.3. First Step Examples

12 December 17, 2025

Enter the following commands:

$ls lists the contents of the current working directory

$ hello runs the program hello, which is the hello world example program

$ cat sortex displays the contents of the file sortex, which is an unsorted file

$ sort -f -u sortex sorts the file sortex, case insensitive and presenting only unique items
$ /example/imagedraw chris0_img displays the image chrisO_img

$ man vi loads the manual page for the vi (visual) editor

4.4. Default User Accounts

The default user accounts are root, test and marko.
The test account contains a small number of files for the examples earlier in this section.

The marko account contains a larger number of files that are used for regression testing. There are no
“personal” files there. The password is “password”.

The root account has no files but it’s use is required for a small number of system administration actions,
requiring occasional use. The password is ‘password”.

4.5. User Accounts Management

The more common actions are to add or remove a user account, or set the password for an account.

13 December 17, 2025

adduser username - creates a new account and home directory for the username. The account is
effectively locked until the password is set.

rmuser username - removes the account but the user’s home directory is retained. The rm command can
be used to remove the directory if desired.

passwd [username] - sets the password of the current logged in user when no username is specified, or
the named username when specified. Only root can change other user’s passwords.

Address Map | Standard/Graphics | Text 40 Text 80 Text 80x30
0 0 0 0 0
100 SIT SIT SIT SIT
200 2FF
300 3BF
700 T7F
900 95F
0BO00 to 0B1F CT

1800

GPU data and
methods
(bitmap mode)
1FFF
2000 2000 2000 2000 2000 2000
2100 GPU data and GPU data and GPU data and GPU data and CT
methods (all modes methods (all methods (all methods (all
except bitmap) modes except modes except modes except
bitmap) bitmap) bitmap)
3300 33FF 33FF 33FF 33FF

To create a new user account, perform the following steps:

- Login as root

- Execute the following commands in the shell:

$ adduser username replace username with the desired name

$ passwd username the system will prompt for the password to be entered twice

14 December 17, 2025

$ logout
- Login as the new user

4.6. Printer Configuration

Printing with TIPI and Tl RS232 card devices is supported. The file /etc/printcap is used to configure
named printers. When printing with the Ip command and the -d printer option is not used, the printer
selected will be “Ip”. As such it’s necessary to have a printer named Ip.

The format within /etc/printcap is standard; however, the format itself is not user friendly. Thus caution
should be taken. The auto recommends first making a backup copy of the file before modifying.

The initialized values in the file are as follows and provide support for all parallel devices. As such it is
not critical that the user modify /etc/printcap.

Ip|lp1|local_printer:\

Ap=/PIO/1:\

:sd=/var/spool/lpd/Ip:\

JIf=/var/log/Ipd-errs:\

:mx#0:sh:sf
Lp|Lp1|Local_printer:lp=/PIO/1:sd=/var/spool/lpd/lIp:lf=/var/log/Ipd-errs:mx#0:sh
Ip2|local_printer2:lp=/P10/2:sd=/var/spool/Ipd/Ip2:lf=/var/log/Ipd-errs:mx#0:sh
Ip3|local_printer3:lp=/PI/P10:sd=/var/spool/lpd/lp3:lf=/var/log/Ipd-errs:mx#0:sh

Only the printer name field (the first) and the Ip= option are used at this time, although the other valid
fields can be present even though ignored. The printer name field support aliases by using the bar
symbol. Fields are separated by colons. Fields can be written to separate lines via a colon and
backslash character.

To select the default printer, Ip, modify the file such that your desired printer is named Ip.
All other names are at the user’s discretion.

For example, if the only printer is TIPI, you may delete the first three entries and modify the last to

Ip|local_printer:lp=/PI/P10:sd=/var/spool/lpd/Ip3:lf=/var/log/Ipd-errs:mx#0:sh

15 December 17, 2025

5. Architecture

5.1. Runtime
The runtime architecture has a boot loader, kernel, library methods, and processes.
The boot loader is allocated to cartridge ROM and responsible for initial system bringup.

The kernel is also allocated to cartridge ROM and responsible for managing common functions such as
file management, process management.

Process management handles program execution, maintaining the queue of programs that must be
executed, and starting the next required program after one terminates. When a login session is not
active and no other programs are in the queue for execution, the login program is executed, running as
root, to allow a user to login using their credentials. When a login session is active, and programs are
queued, the next will be started. When no programs are queued to execute, the user’s command shell is
executed. This relatively simple logic works for most situations but has the disadvantage that “calling”
programs, such as the shell, are restarted after the called program terminates, and any needed state
information must be intentionally persisted between execution sessions. Release 4 is intended to correct
this by supporting multi-processing.

The default shell, sh, provides a command interface that supports program chaining, pipes, redirection,
and command aliases. This shell should by no means be confused with the standard shells sh, bash,
etc. It may be better named “fbsh” for fairy-basic-shell. It has just enough. The cool part, though, is that
anyone can write a shell and it can be easily included in the Unix99 distribution. Shell paths are set in /
etc/passwd on a per user basis. Thus it is possible to have multiple shells available in the same platform.

Basic Unix commands are covered in a later section.

The system state, which includes the display mode, fonts, and colors, is preserved between program
execution. Files are are automatically closed when a program terminates, although it is good
programming practice to close files directly.

5.2. Library Methods

Library methods can be called directly by name, as is the standard.

Due to bloating of the executables, methods that were already used in the cartridge ROM and any others
that could be “stuffed in” are made available to programs by allowing the programs to simply prepend
“dylib.” before calling those methods. This works as dylib is a structure of pointers to methods in
cartridge ROM. There’s one level of indirection which costs a small number of CPU cycles for each call.

As cartridge ROM paging has been integrated, more methods have been added to the cartridge ROMs.
The dylib approach is in process of being deprecated in favor of program RAM-based trampoline
methods that call to the appropriate ROM resident methods. The trampoline methods bear the name of
the desired function but they internally set the ROM page, call the ROM-based method, handle any
returns, and reset the ROM page to the default page.

The migration to ROM-based library methods is incomplete. As such program must bear direct linking

within their image when the desired method isn’t located in ROM. The largest methods, however, are
located in ROM and available via one of the above three approaches.

16 December 17, 2025

In general there is a cost to any of the above approaches and it comes down to the need. The fastest
code will always be the direct calls. There’s little value to placing certain methods in ROM, such as
‘isdigit()’ as the processing cost, bloat of the added trampoline method, and perhaps more makes this
prohibitive. The most bang for the buck comes by moving methods into ROM that already consume a lot
of time and space, thus the added overhead is minimal.

5.3. Memory Organization and Usage

The following sections describe the Unix99 memory organization and usage.

5.3.1. RAM

Upper Memory
OxFFFF End of HEAP

Start of HEAP
End of TEXT segment

0xA000 TEXT segment
Lower Memory
0x3FFF Bottom-end of STACK

0x3400 Top-end of STACK
0x33FF End of lower memory HEAP

Start of lower memory HEAP
End of BSS

Start of BSS
End of DATA segment

0x2500 Start of DATA segment
0x2000 Reserved for Unix99 state and process data

Generally programs have available up to 24 KB RAM for program (text segment) in upper memory, up to

3 KB for the data and BSS segments, and a 4 KB stack. The heap consists of all remaining available
memory, both lower and upper memory.

5.3.2. SRAM Organization

8300-831F Registers
8320-833B Reserved for Unix99 state and process data
833C-8357 Reserved for Unix99 speech data

Other addresses required for console ROM usage are used by Unix99, such as floating point support,
DSR level 2 subprograms, etc.

17 December 17, 2025

5.3.3. VDP RAM Organization

The following describes the VDP RAM organization within the Unix99 environment. The Standard, Text
40, Text 80 and Text 80x30 provide the most flexibility, in that they full support text and file functions
while the Bitmap mode does not. Programs can use bitmap mode and then change to one of the other
modes to reenable text and file processing.

5.4. Persistent File Types

Persistent files store text, binary data and program images. A compromise approach for file handling per
Unix style has been implemented, one that provides regular Unix file (stream) type access but also
support for the long existing Tl ecosystem. Programs are stored in binary formatted files.

Text file support is provided by a small set of methods, including open, fgets, fputs, fprintf, close and
more. Full stream support is provided, but Tl file types mapped as DISPLAY, VARIABLE, SEQUENTIAL
can be used. For existing Tl text files, the record size is obtained from the file specification, allowing for
maximum compatibility. When creating files, Unix99 will use record size 80.

Binary file access is provided by a similar set of methods, including open, fread, fwrite, fseek, ftell,
rewind and close, providing true stream access. They are mapped to INTERNAL, FIXED, 255, RELATIVE.
In essence the fixed records are used as blocks and the methods internally map the stream to the
blocks. The physical first block of the file is used to store file metadata, including the actual length of the
stored data.

The binary files are essentially unix file streams. Any file method can be used with them, including any
that are text oriented. For example, One could write a file with fwrite for 80 bytes, fputs a string, and
fwrite again. Then read with fread for 80 bytes, fgets a string and fread the final.

fopen file modes “r”, “w”, and “a” pertain to Tl text files.

fopen file modes “rb”, “rb+” and “wb” pertain to file streams, suitable for text and binary data.

18 December 17, 2025

6. Commands

This section describes commands available within Unix99. Many are standard Unix commands, some
are examples and some are games.

6.1. Unix commands

In the interest of not documenting using multiple places, please use the ‘man’ command to read the
manual reference for commands.

The usage of the ‘man’ command is as follows:
man program_name
where program_name is the command to be referenced.

To list all commands on the system, enter this command:
Is /bin

This will show a listing of all files in the /bin directory. Select one, such as hexdump, and enter the
command:
man hexdump

This will present the manual page for hexdump.

The user is encouraged to read the manual pages and note the supported options. Modern unix
commands have grown quite large, supporting many options. The bloat within them is outside of what is
currently possible within the current Unix99 design without resorting to highly complex programming
techniques.

Each user tends to grow accustomed to using a set of commands and options. In general the
commands and options implemented in this initial Unix99 release represent those the author has most

commonly used and are likely to heavily overlap with others’ usage. Those with the ability are
encouraged to add new features and commands to the collection.

6.2. Non-Standard Commands
Many non-standard Unix commands are included in the /bin directory and provide support for TI-99

specific capabilities, such as setting colors, loading alternative fonts, and setting display mode. Manual
pages exist for these as well.

6.3. Example Programs

Many example programs are included that demonstrate feature usage. They also serve as part of the
regression test suite. A few are somewhat useful utilities, such as screen savers and image viewers.

These are included in the /example and /game directories.

19 December 17, 2025

7. Development Environment

The development environment consists of several tools. The compiler and linker are contained in a pre-
built docker container named “cmcureau/tms9900-gcc”, built several years ago as a means to simplify
the complex build and update instructions for GCC. This container is a Linux x86 image but does run on
both x86 and ARM platforms. When used on ARM platforms it is significantly slower but still quite
sufficient.

The source for Unix99 as well as several example programs are provided. Thus the user is free to modify
any aspect and the source is provided as-is. Even so, please submit any useful modifications for
inclusion in later releases.

Applications developed in this environment can be distributed without the operating system; however, it
is recommended that a statement of version compatibility be provided.

Tools integrated into the development environment:
- GCC

- Libti99

- Tl Image Tool (requires Java)

- xdt99 3.5 (requires Java)

The following instructions have been verified to work on MacOS Sequoia on x86 and ARM Apple silicon.
They should also work in Linux.

7.1. Docker Container

Install Docker Desktop for your build machine. It can be downloaded at https://www.docker.com/
products/docker-desktop.

Install the docker container named “cmcureau/tms9900-gcc”. This container provides the compiler,
linker, make and other tools within the GCC collection.

7.2. First Application

A directory, “helloworld” is provided and serves as the template for any application the user desires to
develop. A script “mc” (make/compile) calls make within the container, processes the products and
moves the executable into the image directory and image files used for distribution.

To create a new application, simply copy the “helloworld" directory to a new directory with the desired
name, update and build.

7.3. Standard C and Unix Libraries

All library elements described below generally conform to the MacOS, FreeBSD and Linux UNIX
definitions, in that order. Descriptions for each can be found in the online manual pages on the internet
or using man method, where method is the desired method name.

In the release code you will find the header directories, starting at the ‘include’ path. The methods

described there are implemented and for use by application developers. These are the definitions of the
application programmer interfaces (APIs). Note that ‘include’ also has a subordinate directory named

20 December 17, 2025

‘private’. All methods described there are internal, subject to change, etc. Their use is highly
discouraged.

This release is by no means complete. It is currently one person’s work over the last two years with the
intent to provide enough content to build truly usable and releasable software. If, as a developer, you
come across an unimplemented method, write it yourself, but please submit it for inclusion so others can
make use of it. If the need is more complex and requires a more complex feature set with architectural
changes (example: shared memory), please feel free to make requests for support. In some cases the
author will be willing to work with the requester.

A note concerning double precision literals and variables: The GCC compiler includes a defect where
double precision literals are not correctly converted into the platform’s native format, radix-99. Libc
methods for double precision values are included and working. atof() can be used to set literal values via
string. A newer release of the compiler is on the way and will likely address this.

The standard APIs with at least partial implementation are:
- assert.h
- ctype.h

- dirent.h

- errno.h

- ioctl.h

- libgen.h
- signal.h

- statfs.h

- stdbool.h
- stddef.h
- stdio.h

- stdlib.h

- string.h

- time.h

- unistd.h
- utsname.h
- sys/ipc.h
- sys/shm.h
- sys/stat.h

7.4. TI-99/4a - Specific Libraries

The non-standard TI-99/4a specific library specifications are also in the ‘include’ directory. The headers
contain more information than do the standard headers since there is currently no other documentation.

Again, if you as a developer decide an additional function is needed, please feel free to write it and send
to the author for inclusion.

The APIs available are:
- cipher.h

- cache.h

- console.h

- constants.h

- conversion.h

- dylib.h

- gpu.h

- groff.h

21 December 17, 2025

image.h
math.h

mem.h
mouse.h

rt.h
sequencer.h
soundqueue.h
sounds.h
speechqueue.h
util.h
version.h

22

December 17, 2025

8. System Directories

/[system disk]/bin
This directory contains the Unix99 executables.

/[system disk]/etc
This directory contains system configuration information.

/[system disk]/example
This directory contains example executables.

/[system disk]/fonts
This directory contains system fonts, including the default and alternatives.

/[system disk]/game
This directory contains games.

/[system disk]/home
This directory contains user home directories.

/[system disk]/proc
This directory is used for process-oriented files and should not be tampered with.

/[system disk]/tmp
This directory is used for temporary files.

/[system disk]/usr

This directory is used for user-oriented system directories and files. The manual pages are stored in /usr/
share/man.

23 December 17, 2025

9. Future Release Plans

+ Provide support for multi-threading and multi-processing by means of the expanded memory
resources provided by the SAMS memory expansion.
+ Complete set of libraries using trampolines

24 December 17, 2025

10. Credits

+ GCC, targeted for the TI-99/4A by ‘insomnia’ - provides the C compiler for Unix99.

« [ibti99 by toursi - provides low-level file, sound, speech and VDP memory methods.

+ fcmd by jedimatt42 - methodology for use of DSRs, use of RADIX 100 TI ROM methods, provisioning
of string methods.

Without the above incredibly talented supporters in the AtariAge community, this work would not have
been possible.

25 December 17, 2025

11. Troubleshooting

Files of the format “./*” are seen on the Tl. Remove all files on your PC that are named “._*". These
files are part of the tar file and are included in the tar archive. Attempts will be made to remove these in
future releases. The installation instructions have attempted to address this.

Some drives and devices are not accessible. Unix99 currently supports the commonly available
devices and drives in the Tl ecosystem. Other devices can be added but only tested devices have been
made available. The program /example/dsr will list the DSRs on your system that are available.

Unix99 does not currently support aliasing / mapping of legacy DSRs for legacy software. The primary
reason is that there is no legacy software running within Unix99.

Removing files doesn’t work on Classic99. Classic99 has a small delay where the deleted files can be
listed after deletion. They will disappear after a few seconds.

26 December 17, 2025

	Change History
	Purpose
	Installation
	Upgrade from Previous Installation
	Usage
	Architecture
	Commands
	Development Environment
	System Directories
	Future Release Plans
	Credits
	Troubleshooting

